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Introduction

To facilitate the OTHR coordinate registration process, bistatic backscatter
sounders are routinely operated along with QVI sounders at the two operational facilities
in Virginia and Texas [Headrick, 1990; Headrick and Skolnik, 1974]. These sounders
have azimuthal receive antenna beam steering capability, so that a BI can be measured for
a set of beam directions within the azimuthal coverage sector of each backscatter sounder.
Here, we combine each of the eight individual WSBIs obtained at different azimuths to
form an integrated view of the ionospheric density over the OTHR coverage sector (64°-
80°).

Each WSBI typically has a distinct leading edge which is, to first order,
independent of the scattering properties of Earth’s surface and, in the case of a narrow
antenna beam, is determined entirely by the three-dimensional distribution of electron
density existing in the ionosphere. The theoretical leading edge for a specific ionospheric
model may be found to high accuracy by using ray tracing, as discussed in Section 2.

The leading edge of the WSBI contains information about ionospheric regions
Jocated thousands of kilometers away from the sounder and the inverse problem of
backscatter sounding, as we address it here, is the problem of extraction of the plasma
density distribution in the ionosphere from the measured leading edge. This inverse
problem is rather cumbersome, because even the solution of the direct problem (the
relationship between the plasma density distribution and the leading edge) can not be
expressed explicitly. A rigorous approach that addresses the numerical solution of this

problem was developed recently by Fridman and Fridman [1994]. This approach is




based on the Newton-Kontorovich method for the solution of nonlinear operator
equations and on Tikhonov’s regularization method for ill-posed problems. Fridman and
Fridman [1994] considered the inverse problem for a single WSBI and reconstructed the
two-dimensional electrpn density distribution in a vertical plane aligned in the direction
of sounding. The technique was found to accurately reconstruct the ionosphere in
numerous tests, both against simulated data as well as multi-station experimental data
[Fridman et al., 1994].

In this project, the approach of Fridman and Fridman [1994] is extended to
develop a method for the reconstruction of the three-dimensional ionosphere from the
OTHR WSBI data. A regularized formulation of the WSBI inversion problem and
specific numerical methods for this nonlinear inverse problem are described in Section 1.
The key element for the solution of nonlinear problem is Tikhonov’s method for two-
dimensional linear problems developed in Section 2. Section 3 presents several examples
of inversions for data collected by the OTHR located near Chesapeake, VA. In
conclusion, the WSBI inversion technique is discussed as a new method for ionospheric

diagnostics.




1. Theory of WSBI Inversion

1.1 Starting Principles

The measured WSBI leading edge is a function of two variables g(f,¢) because
it represents the dependence of the minimal group delay on frequency f and azimuth ¢.
The theoretical value of this function g(f,¢), for any given distribution of electron
density n(x;,x,,x3;) specified in a system of coordinates x;,x,,x;, may be calculated
by numerical solution of the ray tracing equations as follows: for each frequency and each
azimuthal beam, a fan of oblique rays exiting in the central azimuthal direction of the
beam at different elevation angles is considered, and the ray that exhibits the minimal
group delay for propagation from the sounder to a point of first contact with the Earth and
back to the sounder is derived. This minimal group delay and the current value of
operating frequency represent two coordinates of a point in the leading edge plot. Every
point of the leading edge is obtained by applying the above procedure to the full set of

operating frequencies (the frequency range is 5-28 MHz for the Virginia OTHR).
Formally, this process establishes a nonlinear operator G, that transforms n(x;,%,,%3)
into g(f,®). It can be represented symbolically as

g=Gun. ) | (1)
Essentially, WSBI inversion may be viewed as resolving this equation with respect to n.
The equation is obviously underdetermined because the known function g is a function

of two {/ariables, whereas the function to be found depends on three variables. In order to

avoid this inconsistency, we parameterize n by a function of two variables that is denoted




as u(sy,s3). The physical meaning of u and of the variables s;,s, depends on the
selected form of the parametrization. The most general parametrization may be formally

represented as

n= Nu (2)
where N is a known operator (generally nonlinear) that transforms u into ». The method
described below is designed to work with an arbitrary parametrization, however in all the
examples presented in this report, we use the following simple form of parameterization
n(x1,%p,%3) = no(x3)[1+u(xy,x,)], 3)
where ny(x3) is the vertical profile of electron density as measured by the QVI sounder
at the OTHR site. Here and below we require that coordinates x1,Xy specify the

geographic position of a point and the altitude is determined by x5.

After the parametrization is introduced we have g=G, u, where G, = G, N

defines the group path operator. The inverse problem is the task of resolving the

functional equation
g=Gu, €
where u is the unknown function in this equation.

Inverse problems such as the one considered here are usually unstable [Tikhonov
and Arsenin, 1977], meaning that even the smallest error of measurement in g causes
considerable deviation of the solution u from the true solution. In order to stabilize the
solution we have incorporated Tikhonov’s method of regularization [Tikhonov and
Arsenin, 1977] in this work. The essence of this method, as applied to the WSBI

inversion problem may be formulated as follows: All possible functions u that satisfy
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equation (4) within the accuracy of measurement of the leading edge & are considered,
and among these functions the smoothest one is chosen as the optimal solution.

In order to implement this approach, a quantitative measure of the smoothness of
4 must be introduced. This measure is called the stabilizing functional Q[u] and is

defined by

2 2
0 0
Qlu] = Ij‘:uz + ql(—as—bi) +q5 (Ei] :lwdsldsz , (5)

where q,(s1,52), q2(51,52), and w(s;,s,) are arbitrary positive weight functions that
are chosen in accordance with the symmetry of the system of coordinates and the typical
scales of the task in consideration. Let & be an a priori root-mean-square error of
measurement of the WSBI leading edge, then the regularized solution of the inverse

problem obeys the following relationships:

P max Smax

j(g - éuu)z d(Pdf < 52 ((P max — Pmin Xfmax - fmin) (6)
Pmin Smin
Q[u] — min )

where @ x> Pmin 204 fax> Sfmin are respectively, the upper and lower bounds of the
azimuthal direction and frequency of the transmitted sounder beam pattern. Thus, the
functional Q[u] is minimized on all u that satisfy the inequality (6).

A procedure for the numerical solution of the problem stated by (6) and (7) has
been developed aé a generalization to three dimensions of the technique for BI inversion
in two dimensions described in Fridman and Fridman [1994]. It is an iterative process,

where each iteration executes the following three steps:




1. Ray tracing synthesis of the WSBI leading edge for a given ionospheric model,

2. Linearization of the operator Gu (based on the solution of the linearized ray tracing

equations),

|98}

. Calculation of corrections to the ionospheric model by solving the problem stated by

(4) and (5) with Gu replaced by its linearized approximation. The solution is attained
by applying the regularization method for linear problems, a method developed
originally by Tikhonov and Arsenin [1977].
The corrected model obtained from step 3 is used in the next iteration for step 1. The
iterations are continued until the model converges.

Input data for the inversion procedure include: (i) a table of WSBI leading edge
g(f,9); (ii) the apriori root-mean-square error 8 of the leading edge measurement; (iii)
the overhead vertical profile ny(%) obtained from the QVI data (% is altitude). The output
is a three-dimensional distribution of electron density for the area covered by the sounder.
The maximum height attained by this inversion is always below the F2 region
ionospheric maximum, because all rays forming the leading edge are refracted below the
peak of electron density.

In this report we will describe the most important developments of the inversion
technique achieved during the course of this project. In 1.2 we will describe the theory
and algorithm for calculation of the linearized group path operator. Then, in 1.3, our
realization of the Tikhonov’s regularization method for the nonlinear problem in

consideration is presented.




1.2 Theory and Algorithm for Calculation of the Linearized Group Path Operator

Let us denote as P(B,¢, f) the group path from the transmitter to the point of the first
contact with the Earth for a ray exiting the transmitter at the elevation angle B (measured
from the vertical direction), azimuth ¢, and operating frequency f. Available ray-tracing
codes are able to perform accurate calculations of this function. The leading edge

g(f,) is related to the function P as follows:

g(f,9)= min P(B,9,f) (8)
0<B<n/2

The elevation angle at which the group path P is a minimum we will denote as B, (¢, f) .

So that

g(/9) = P[Bm(@. /). 1] ©

Consider variations of functions P, B,,, and g associated with an infinitesimal variation

n of electron density in the ionosphere. That is suppose that
n(xy,%5,%3 )= 10 (61,2, %3 )+ nxy, 2,33 )
P@.0.7)=P(.0.1)+5P@.0.1)

B (@ 1) =B (@: )+ 8B, (0. 1)

2(£.0)=go(f.0)+85(f.9)

Variation of the leading edge 5g may be expressed in terms of 8P and 8f,,. From (9)

we have: 8g(f,(p)= 81_’(|3m0 ,(p,f)+ SBm((p,f)al_’o (Bmo,(p,f)/aﬁ . The second term in

the right-hand side is equal to zero because of (8), so that




8¢(/.9)= P (Bno0.f) (10)
In order to proceed further we will need to use a concrete system of ray tracing

equations. However the results obtained may be easily generalized for any arbitrary form

of ray-tracing equations. !
To simplify the procédure and to reduce the computation time, we neglect

azimuthal displacements acquired by the rays during their propagation in the ionosphere.

This approximation is justified by the fact that in the first approximation these

displacements do not affect the leading edge. Effects of the geomagnetic field will be

also neglected. With these simplifications the ray tracing equations may be represented

in the form;:

d
?dyx_lz Fl(x’ylsyZ)

d
D2 o) an

d
f = F3(’¢=J’1J2)

where

F](x,yl,yz)wf—zy—z . (12)
- )2

~

1 0
Fz(x,yl,yz)= E/_—ngﬁ (13)

exp(2y1 / RE)

F3(x,y1aJ’2)=—~\/:2— (14)
€=)




Y2 =& cosp | (16)

y3 =P’ (17)

z=Rglog(l+h/Rg) (18)

§=(Q+h/Rg)e (19)
f2

s=1—?”7 (20)
2

P | @D

P' is the current value of the group path, and x is the range along the earth surface
measured in the direction of the exit azimuth.
Let us write down linearized equations (11) by substituting in (11)-(20) the

following expressions

Y1 =10+
Yo =Y + 0¥y
Y3 = Y30 +8y3

fp = foo+¥f;
and implying that y;4,¥20,¥30,and f, 50 satisfy to (11). As a result the following system
of equations may be obtained:

oy, apy ap 0y by 0

d 0

T &, [+lay an 08y |=|b 5f§+ 2 5}1‘5pr (22)
O3] las1 a; 0] dy;| [bs 0

where




Y20 0 .

ay(x) =——" 373 €0’ (23)
2&o “J’220)3 oz
€,
@y (x) =~ (24)
(80 -J’20)3
1 8%, 1 5%y )
ay(x)=—-—7 >y 7 ( , (25)
& -y % 4 —ygoj oz
Y20 0y
ay(x)=— 2 2 V2 5 (26)
2\gp —y20)3
exp(2 Yio/ R E) 4 1 0Og
a3 (x) = - = > R. = 2 5 @7
24/ €9 — Y50 E € =)
exp(2y10 / Rz 20
az(x)=— 3 PN IR (28)
(80 “)’20)3
_ Y0 exp(2y10 / Rx) 20
™ 2k 2927 29)
2f (80 —m)’
b - exp(2y10 / Rg) 2 1 Y (30)
277 2 ~ e /2 01
2f RpyEo -y 2(% —J’zzo)3 o
exp2y10 / R
3 = ( ) (D

272G -0%)"

o exp(3y10 /RE)

¢y = ! . (32)
21 %% - ¥%

For our purpose equation (22) should be considered with zero initial conditions. The

nearest goal is to find the relationship between 8g and &f p that follows from (22).

10




Suppose that the value of B,,, for an unperturbed ionosphere is found. Then we take the
solution that corresponds to the exit angle B,,, as the zeroth order solution to be used in

(22). Suppose that equation (22) is solved for a given &/, , then according to (10)

— d
88 =8P (B 0 )= 3 B + 8%, ) ¥30 (%m0 )= 3%, V30 (F o )+ 893 (Fno)

8yl(me) d
dylo (me )/d dx

So that

— Y30 (me )+ dy3 (me)

Fso[ Xm0, Y2 (me)] 1o )=

5g = 5P (B, )= 55 (%,
g ( 0) y3(x 0) F’lo[mo,oyz( 0] (33)

dy3 (me )" 3y (me)

l3

Here x,, denotes the value of x for the first landing point of the ray, and B is the
elevation angle at arrival in the landing point , F}, and F3, are correspondingly F; and
F; for the unperturbed ionosphere.

Now it is convenient to introduce Green’s function for equation (22) (or unit
impulse response function). Namely we introduce a 3 by 3 matrix R(x,x’) that satisfies

the equation:

d
a‘x—Rf aR = |8(x — x’)

with zero initial conditions (R(x,x")=0 at x < x'). Here I is a unit 3 by 3 matrix, and
ajp a0

a— an a22 0].
ay; azp 0

11




The variation of the leading edge may be written as

og = ! {G'(x')sfj [x1 e ()03 (67)]+ G (x ')a_ath o 1 G2 (), x5 ( )]}dx '

(34)

where the functions x;(x"),x, (x'),x;(x') are specifying the ray’s trajectory, and

()= Z {R3n (fmo ,x’)— Fy [J?mo 0,9 (fmo )]Rln (fmo ,x')}bn ")

FIO [me 90’ Y2 (me)]

3 Elx ’ _
G"(xl) = Z {R3n (me > x,)_ 2 [xmo ,O L (xmo )]Rln me > x,)}cn (x ,) =
n=1

Fio [fmo 0,1, (me)]

1
{Raz Fmoox ')— 5 Ry (me’x ')}02 (") (35)

COS_O
The unit impulse response may be expressed in terms of three linearly independent
solutions of (22) with &f 5 =0. We obtain such solutions e;(x),e,(x),e;(x) by solving

uniform equation (22) for three instances of initial conditions:

1 0 0
e (0)={0}e,(0)=|1}e;(0)=|0]|.
0 0 1
Then,
R(xx")= E(x)E’! (ol ~x") (35)

Here matrix E consists of columns e;(x),e, (x),e;(x):

E(x)= [91 (x).e3(x), e5 (x)];

and 6(x) is the unit step function (6(x)=0 at x <0 and 0(x)=1at x> 0).

12




Calculation of the inverse matrix is simplified by the fact that

0 en(x) ey(x) 0
e;(x)=[0] sothat E(x) =|e;p(x) exn(x) 0]and
1 e;3(x) ex(x) 1
) € — ey 0
E'(x)= — e en 0 (36)

€611 —€21€12
—epej3+eyer; €36 —eeyp 1

The components of R involved in the expressioh (34) for leading edge response are:

_e1(Fmolenn (x) —en1(Xpmp)ern (x')

B3 )= e )= en e () G
L e (Emo)ea (x7) + egy (Ko )ers (x)

Rlz(xmo’x )_ ex (x")ey (x") —ep1(x")ep(x") (38)

R13(x,x')= 0 (39)

e13(Xn0)enn (x') —ex3(X0)e12 (x) —exn (x")eg3(x") + ey (x)ex3(x)
ex (x"eg (x") —ep(x")epy (x)

R31(fm0>x')=

(40)

—ep3(X0)en1(x") +ex3(X0)er (x) + ey (x)eg3(x) — e (x)eyz (x)
ey (x")ep (x") — ey (x")erp (x')

R32 (fmorxl):
(41)

Ry3 (oo x')=1. | (42)

Let us approximate integrals and derivatives in (34) by finite sums and differences.

Denoting as w; the coefficients the integration formula we obtain:

13




5 = Z{G’(x,’)éfpz b s D) 0 or a6 h o o) o -

Z/: w, %?'(x;)Sf,f [x1(x/')=x2 (xi)h(xl')]+

(43)
_— ’\Sfp I}ﬁ (cf ) x (xz)hk0(1)+1 } 12 I%l (1), (xl)hko(l)
Mgyt = o
Furthermore, by invoking interpolation the above expression may be
approximately represented as:
8¢= ) Gy dr2(./.k), (45)

ijk
where integer variables i, j, and k£ denote the nodes of a 3-D spatial grid in which the 3-D
ionosphere is specified. Using triple linear interpolation we obtain the following
expressions for nonzero elements of the matrix G:

Gy = > [G,(l p3<l))—G }(1 J2X0) (EFNO)Y

Lig(D=i& jo(D)=j&ko(I)=k

g }
1
+ > G/~ p3 (D)~ G ——— M- PO,
Lig(1)+1=i8& jo (1)=& ky (I)=k - k+l Tk
[ 1]
+ > Gill=ps )Gty (= )2 (O
Lig(D=i& jo (1) +1=j & ko (I)=k - k1l ™ Tk
( ’ " 1
+ > Gips () + Gi'—— =P DXL - DI
Lig(1)=i& jo(1)= j& ko (1) +1=k - kT Tk
+ z {G1P3 O +Gy 7 }(1 )4\ (l))Pz (Dw,

Lig(1)=i& jo (1) +1=j& ko (1) +1=k

14




+ > Gip3(D+ G}
Lig(1)+1=i8& jo (1)=j&c ko (1) +1=k

1
i ]pl OQ-p2OW

i 1
+ Z Gi(1- ps(1))- G”’h—Th—}p‘ (Dp2(Dw,
Lig (1) +1=i& jo (I)+1=j & ko (1)y=k - k+1 ™ Tk

1
+ 2. [G;p3<l>+G;'ﬁh—]pl QLAY (46)
Lig (1) +1=i8& jo (1) +1=j&c ko (1) +1=k k" Tkl
The following functions has been introduced above:
io(D):x, (D) < X{™ =g = imin

(1) = X =iy =i —1 (47)

x;min <x, (1) < x;max =iy = maxz'ozxi" <x ()

POREOLE:
P
x{o(l)’r] _ xio(l)

(48)

The pairs of functions j,(I), p, (/) and ko (1), po(I) are defined in a similar way for

spatial variables x, and x3 = %, correspondingly. Notations x{,x{ ,xé‘ =h, are
introduced for nodes of the variables xy,x,x3.

When realizing these formula it is convenient to have the variables x; and x' to
be the same. Then each sum in (46) contains only one element and the second sum is

equal to zero. This also permits an economical storage of the array G. Its nonzero
elements may be specified as Gy, 1) joko()> Fin(.soD+1ko) > CioWao ko412

Gy (1), jo (D +1,kg ()41 and can be stored in four vectors of length 7, —imin +1-

15




Now consider the parametrization of f 13 by a function of two variables u(s, ).

Linearized relationship (2) may be represented in the form:
6fpz (x1,%5,%X3) = J‘ D(x1,x5,%3,5,1)0u(s,t)dsdt 49
We approximate the above integral by a finite sum with weight coefficients 7,,,, :

S 2.1k = D, D Bk Syl S0, 1)y (50)

Example. In the case of parametrization (3)

2
D(xy,%9,%3,8,1) = fpo(M8(x; —$)d(x; — 1)
and the finite difference approximation of the above expression is

O, .Syt = [0 ()8 s 1y

Using (50) in (45) obtain:
8= D K'(mn)t,du(m,n) (1)
where

K'mmy= D " Gye®ls joksSpoty) (52)
i j ok

Note that (51) is a finite sum approximation for the integral

og = I I K'(s,t)ou(s,t)dsdt (53)

It should be remembered that the function K’ depends also on frequency and the

azimuthal direction of sounding.

16




Relationships (35), (37)-(42), (46)-(48), (52), (51) determine the desired linearized

group path operator.

1.3 WSBI Inversion Using Newton-Kontorovich Method and Tikhonov’s
Regularization Method
Input data for the inversion procedure include: (i) a table of WSBI leading edge
2(f,0); (ii) the apriori root-mean-square error 8 of the leading edge measurement; (iii)
the overhead vertical profile #y(#) obtained from the QVI data (% is altitude), and (iv)
the apriori root-mean-square error 1 of the vertical profile.

Our ionospheric model is specified by an unknown function of two variables

~

u(sy,5,) and a known operator N :

nlx;,x,,h)= Nu (54)
The function must be in agreement with the measured WSBIs. It also must be in

agreement with n, (#), that is there should be

}’l(xlo,,.7C20,,h)z no(h) (55)
at the QVI location specified by coordinates x;(,x,,. We imply that the operator N is

consistent with (55). Thus, the functional equations to be solved are:

Gu=g (56)
Ngu=ny (57)
Here we have introduced the operator N s that produces the vertical profile at the QVI

location:
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NSu = ]\A/'u[x1

=X10,%2=X20

(58

We are looking for a regularized approximate solution of (56), (57). We define the

regularized solution according to the following relationships.

A 2 ~ 2
Gu-g Ngu—n
olcal Jroonf

Q[u] - min

The norm symbol [|{|is used here for rms value of a function:

.
le(r-0)= |7 2 [er00 )
I'=1

o
7o ()] = \/ Z [0 Gy )]z / "
=1

(59

(60)

(61)

(62)

Expression (59) indicates that we consider (56) and (57) as one equation. Parameter nis

a positive constant smaller than 1, it is introduced in order to be able to properly weight

these equations. Our typical choice of this parameteris p =1/ L', where L’ is the total

number of points in all WSBIs.

The functional equations (56) and (57) are generally nonlinear. We solve this

system iteratively. In each iteration operators N ¢ and Gu are approximated by their

linearizations. This approach to solution of nonlinear operator equations is known as

Newton-Kontorovich method [Kolmogorov and Fomin, 1975].
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Linearization of the operator N is specified by a known matrix @ in accordance
with (50). Without loosing the generality we may accept that #=0 corresponds to the

uniform ionosphere with the profile equal to ng (/) everywhere and that

X190 =0
Xp0=0"

Mayjor steps of the iterative solution.

1. The starting approximation to the 3-d model of the ionosphere is formed by assuming
i1 %2,1)=no () (54)
2. Ray tracing is used to calculate the theoretical leading edge g(f ,(p) and the optimum

elevation angle f3,, ((p, f ) functions for all values of frequency and azimuth at which the

experimental leading edge points are specified.

3. The rms discrepancy between the experimental and theoretical leading edges

le-2l= \/%;Zl[g(fl,%)—?(fl»@l)]z

is calculated. If the condition (1 p)”g - §H <8 is satisfied then the ionosphere specified

by (54) gives the optimum solution of the inverse problem. Otherwise the iterative
process described below is started with

0g=8-8

dngy(h) =0.

4. The linearized group path operator K’ (defined in (52)) is calculated as described in

1.2 using B, ((p, f ) and n(x1 Xy ,h) found on the previous step.
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5. The system of linear integral equations
‘”K ’(f 0,5, tﬁu(s, t)dsdt = Sg(f ,(p)

J IQD(0,0, h,s, t)Su(s, tydsdt =dny(h)

is solved numerically using Tikhonov’s regularization method described in Chapter 2.

When performing this solution the system is treated as a single integral equation of the

form

j K(l,5,0)0u(s,t)dsdt = f,(])

with the discrete representations of the kernel and the RHS taken as:

K'(Li,j), 1<I<L’
K(,i, ) =
(L5 7) OO0y pos1;) L'+1<I<L
o [ps, 15117
S D = \smgt-11, L'+1<i<L

The weight function introduced in (2.21) is taken as

P = , L'+1<I<L'+L"=1L

n 2 L "
and the meaning of 8 remains the same (the rms error of WSBI leading edge).

6. A corrected ionospheric model is formed by replacing

U—> u+ou
n= Nu
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7. Ray tracing is used to calculate the new theoretical leading edge g(f , (p) and the

optimum elevation angle B, ((p, f ) functions for all values of frequency and azimuth at

which the experimental leading edge points are specified.

8. The generalized discrepancy is calculated:

| o
p= -z - g+ lp00m o] -7

Tterations are stopped if p and du are small enough (meaning that the iterative solution

has approached the true one) . Otherwise the process returns to the step 4 above.
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2. Numerical Solution of Two Dimensional Fredholm Integral Equation of the First

Kind

2.1. General Relationships
Numerical methods for solution of one dimensional (the unknown function is a
function of one variable) integral equation of the first kind were described in literature
before [Tikhonov and Arsenin, 1977]. My realization of the regularization method for
two dimensional (the unknown function is a function of two variables) integral equation
of the first kind is descfibed here.

Consider the integral equation

f(x,p)= ‘”K(x,p, s,t)y(s,t)dsdt , (1)

where f(x,p) and the kernel K(x,p,s,?) are considered to be known functions. Introduce

the regularizing functional

Qly]= _U[yz + qs(%) " a (%) 2}wa’sa’t , )

where ¢, (s,1), q,(s,t), and w(s,r) are specified positive weight functions. Then the

smoothing functional is

D, [y]= J. J-[ IIK(x, D, S, ) y(s,)dsdt — f(x, p)j|2 dxdp

+a y2+qs Y 2+q, » 2 wdsdt ~
I (8s) ot
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Here a is a positive constant called the regularization parameter. In order to find the y
that minimizes this functional I need to calculate the first variation of the functional. Let

us first find variation of the regularizer:

oy 0 oy 0
6Q=2”‘[y6y+qsg55y+qt 5583} wdsdt

o8 C | e G |

_"EQ)E(Q) q‘(@ Q)
—2..{y—as(qu ) " 3\ 5, Sydsdt +2Qwdy| g, asdz‘-—q, o ds

In evaluating this expression the divergence theorem was used.

Now

1

E&Da = J.J.{ Iﬂj K(x,p,s',t")y(s',t")ds'dt’ ——f(x,p)}K(x,p,s,t)dxdp

+ (x[y - g;(qu gy-s—) - %(wq, %H}Sydsdt + Cijy(qs %dt -q; —gy;ds)

The above expression must be zero at arbitrary 8y . Consequently the solution y, (s,?)
that minimizes (3) at a given o may be found from the following integro-differential

equation (Euler equation):

J.J.G(s, t,s',t')y(s’,t')ds’dt’

C)
0 o 0 0
+(X.|:1 —aW(S,l‘)qs(S,t)a‘g‘—B;W(S,l‘)qt(s,f)é;:‘y(&t) = F(S’t)

The equation must be solved with the boundary condition
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Oy ds

qs 55~ s 0 (along the boundary) 5)
Here
G(s,t,8',1") = I K(x, p,s,)K(x, p,s',t")dxdp (6)
F(s0= [[KGr,p.s.07Cr, ey ™

Let & be the a priori root-mean-square uncertainty in measuring f (x, p), then

the following is the regularized formulation of the inverse problem (1):

_”[ f (x, p)— “.K(x, DS, t)y(s, t)dsdt:|2dxdp <§? J‘ dxdp ®)

Ofy]— min )
Solution of this problem is designed as follows:

If the inequality

j J' [ . p)f dixaip <5 I dxdp (10)

holds, then y(s,£)=0 is the solution of (8), (9). Otherwise the integro-differential equation
(4) 1s solved with boundary conditions (5) for a set of o so that a set of solutions
Yo (s,t) 1s obtained. These solutions are then used to find the so called generalized

discrepancy function

p(a) = ”-[f(x,p)— ”.K(x,p,s, t)ya (s, t)dsdt:r dxdp — 82 I dxdp (11)

The optimum regularization parameter o ; is the root of the equation

plog) =0 (12)
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and
y(szt)::yad(s’t) (13)

is the solution of the regularized problem.

2.2. Regularization Method in a Rectangular Region
In the practically important case of rectangular region of integration in (1), that is when
the region of integration is determined as

a<s<b

c<t<d

it is possible to rewrite some of the above relationships in more concrete form. I will
write down these relationships for future use in the description of the numerical method.
The range of variables x,p remains arbitrary.

The source integral equation (1) now is

bd
e, p)= I _[ K(x, p,s,0 (5,1 )dsdt (14)

The Euler equation (4) is reformulated as

h d

jIG(S,t,s',t’)y(s’,t’)ds’dt’

ac (15)
0 o 0 0

+ oc[l ~ 3 w(s,1)q,(s,t) %ot w(s,t)q,(s,t) a}y(s,t) = F(s,1)

and its boundary conditions (in accordance with (5)) are:
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qséy— =qsi =0, c<r=<d
Os s=a Os s=b
& (16)
-~ =q,= =0, a<s<bh
q; o, q: o,y azs
Finally the discrepancy function (11) is rewritten as
bd 2
p(a) = I f(x,p)— IIK(x,p,s,t)y(s,t)dsdt dxdp——62 J. dxdp 17
ac

2.3. Numerical Realization of the Regularization Method for Two-Dimensional
- Integral Equation of the First Kind
In order to accomplish the numerical solution, a finite element approximation

must be introduced.

Sito

Si+1

o Gy i te

Figure 1. Grid of variables s,¢

Let us use the rectangular grid sitj (Fig. 1) subject to the following conventions:
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It is possible to conveniently incorporate the boundary conditions by introducing four
fictitious grid lines numbered by i=-1, i=M+1, j=-1, and j=N+1. The lines are placed
infinitesimally close to the boundary but lie outside the boundary (Figure 2 illustrates

how the grid lines /=-1 and j=-1 are introduced).

t=c-0 ,, t;=c t, t3
1
\ ;
1 S2
1
1
1
1
1 Slza
DL - = =s=a-0

Figure 2. Auxiliary grid lines (the dashed lines) for

incorporation of boundary conditions

Then the boundary conditions (16) are equivalent to the relationships:

y(0, /) = y(L,))
yM+L)=y(M,)), 1<j<N

y(i,0) = y(@i.h)
y(i,N+1)=y(@i,N), 1<is<M

All integrals over s, are approximated by finite sums as follows:
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bd

”\P(s,t)dsdt ~ > ¥ )y (18)

ac 1<i<M
I<j<N

where r;; is a weight function which is specific for each method of numerical integration.

[ am using the trapezoid formula, so that

1
=y e YA +A,) (19
where

hi =54 —8, 1Si<M

Aj=tig—t;, 1<j<N (20

Note that effectively in application to the integration formulas (18) and (19) there
hg=hy =Ag=Ay =0.

Now consider approximation of integrals over the variables x,p. It is more
convenient to refrain from specifying any structural detail of the grid for these variables.

Suppose that nodes of this grid are numbered by one integer /,

L
[[ ¥ pYdo ~ Y 9o} @D
=1

Here P, is an appropriate weight function. In order to simplify notations in the
discussion of numerical method that follows below I will replace the combination x;, p,
by !:

x,,p,——)l.
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I will use the following replacements as well

§; > 1
L - J

Here are the finite dimensional approximations of (5), (6), and (15):

L
G@,j,i'J") = ZK(l,i,j)K(l,i',j')P, (22)
=1
L
FGi,j)= ) K(.i.))f (D 23)
I=1

D GGt J W Ty + 0wl DG )
i'J'

200 g +1/2, ) ywi+1/2,))

]

G +1,0) -y, )]

Bt (24)

20 {Qt(i=j+1/2)w(i’j+l/2) [y(i J+1)—y@ J)]

Aj+Aj_] Aj

A

G-y - 1)]}
j-1
=F(i,))
It is advisable to multiply (24) by r; / ry, where ry is a normalizing constant. This
operation will transform (24) into a system of equations with symmetric matrix (the
symmetry is with respect to swapping of i, j with i', /', note that matrix G is symmetric

in this sense). The preservation of the symmetry of the matrix is essential for the sake of

economizing the use of computer memory. Finally (24) may be rewritten as
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M N
22 Zyiy i) = FGjyry Iy, 1< M; 1</ <N @5)
i'=1 j'=1

Where

rUG(i,j,i’,j’)rl-:j:

iy = o + 0L i

Matrix C may be represented in terms of three M by N matrices:

1 2 3 2 3
Ciay = Cpdird jjr + CypBipraad jy + By g + CyBiy 18 jy + Ciyd 8y (26)
Where
2 14, +4,, ( 1 ) ( 1 ) 2<i< M
G T, Ul gd) e oy @7
o3 _Lhith ( : 1) ( , l) , 1sisM .
VT2 rol i MhImo)\BI 7). 8 2<j<N (28)

1
| .. 2 3 3
Cyj = grz’jw(’d) =G =Gy = Cip

C; and C,-j3- are zero outside the range of indexes indicated in (27), (28). A possible

choice of ryis:

(b—a)(d-co)
RV

Thus, (25) estéblishes a system of M x N linear equations on M x N unknowns

¥(i, ). This equation is solved numerically using standard procedure for systems of

equations with symmetric matrix. The solution obtained is an approximate solution of the

equation (15). A regularized solution is obtained as it is described in Sections 1 and 2
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with evident replacements of the integrals by their finite sum approximations (18)-(21)

and equation (15) by equation (25).
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3. Reconstruction of the Ionosphere from WSBI Data Collected by the Virginia

OTHR

The Navy OTHR systems are comprised of the surveillance radar itself, a quasi-
vertical sounder, and a backscatter sounder. It provides nearly simultaneous
measurements of the WSBI and QVI ionograms. The sounder obtains WSBIs for eight
azimuthal beam directions each separated by 8° (this was changed to 10° in November
1995). The central beam direction of the sounder, or boresight, is at 175°, i.e. almost due
south.

We present here eight examples wherein parameterization (3) was used in each
case. This parameterization produces a model that has the same vertical profile shape
everywhere, which is not valid for a real ionosphere. Nevertheless, the parameterization
has proven to be very useful. It was demonstrated on simulated and real experiments
[Fridman and Fridman, 1994, Fridman et al., 1994] that the method produces an
accurate reconstruction of horizontal ionospheric variations near the typical altitude of
reflection of rays that form the leading edge. In the examples considered here, the
reflection points were rather close to the F-region peak (lower by 5 - 25 km) and for that
reason we present our inversions in terms of electron density (or plasma frequency) at the
altitude of the major maximum of the overhead profile.

Figures la, 1b contain eight panels showing, as a function of frequency and delay,
the measured (crosses) and iterated (asterisks and squares) leading edges for each of the
azimuthal sectors for backscatter soundings acquired on December 8, 1994 starting at

2244 UT (UT is 5 hours ahead of local time). All of the measured data points in these
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Fitting the Leading Edge Data in the 8 Channels

Virginia, December 8, 1994, 22:44 UT
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Fitting the Leading Edge Data in the 8 Channels
Virginia, December 8, 1994, 22:44 UT
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panels were used as input to the WSBI inversion technique; the measurement error for the
one way group range was specified as §=50 km. The iterative solution starts from a
model that assumes a horizontally uniform ionosphere with the vertical profile being
ny(h) everywhere. The theoretical leading edge synthesized on the first iteration is
shown in Fig. 1 by asterisks; the small squares denote the leading edge for the
ionospheric model obtained from the final iteration.

Figure 2 is a contour plot of the reconstructed distribution of plasma frequency at
the altitude #=235 km (i.e. the altitude of the F-layer maximum as obtained by the QVI at
the OTHR site) as a function of geographic coordinates. As denoted by the color bar,
isolines on this and succeeding figures correspond to integer values of the plasma
frequency (in MHz); the red contours show continental and island coastlines. An
azimuthal equidistant projection (preserving azimuth and range) from the OTHR was
used in creating this contour map and quasi Cartesian coordinates (in km) are also
indicated for convenience. The range extent of the area for which the reconstruction is
valid is restricted because, at sufficiently large distances, there are no leading edge related
rays that pass through the F-region. This restriction was taken into account in
determining the greatest range extent of the ionospheric maps presented here.

In this example, acquired near 18h LT, the day-night transition pattern is clearly
evident with a relative difference of a factor of two in plasma density across the
terminator region. A similar example for data acquired in March 1996 (Fig. 11) exhibits

approximately the same difference in density between the sunlit and nightside
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3-D Inversion of WSBI Leading Edge
Virginia, December 8, 1994, 22:44

Figure 2. Plasma frequency (MHz) at h=235km
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ionospheres. Theée data aléé show an'ekainplé' of the expanded coverage (80° sector) that
was begun in late 1995 at both OTHR facilities.

The leading edge data shown on P;ig;re 3 demonstrate unusual bending down
shape. Inversion of these WSBIQ shown on Figure 4 indicates strong latitudinaly gradient
of plasma density that is perhaps a manifestation of the equatorial anomaly [Kelley,
1989]. This example represents data acquired during the pre-sunset hours in late summer.
In the next diagram (Fig. 5), which shows data acquired 1h 48m later, it is evident that
the strong gradient had disappeared, with relatively small variations of plasma density
that are typical of nighttime conditions.

Data shown in Fig. 6, 7 are characteristic for conditions with negative gradient of
electron density typical for pre-midnight time conditions.

The data shown in Fig. 8 were acquired in the post noon time sector; this case is
of interest because the QVI data show ¢vidence of traveling ionospheric disturbances
(TIDs) passing overhead, as each successive vertical ionogram was drastically different
from the previous one (8t = 12m). In general, the reconstructed ionosphere is very
smooth and the plasma density varies less than 20%. While it is possible that some
features of the weak irregular structure present in Fig. 8 are associated with the TIDs,
further ébservationé ﬁeed to be carried out in order to make a definitive judgment about
the effect of TIDs on the large-scale horizontal iondsphéric Structuré.

Figure 9 demonstrates very weak and ‘almdsvtv horhogenéous ionosphere observed

several hours before local sunrise.
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3-D Inversion of WSBI Leading Edge
Virginia, August 5, 1994, 22:57

Figure 4. Plasma frequency (MHz) at h = 247 km
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3-D Inversion of WSBI Leading Edge
Virginia, August 6, 1994, 00:45

Figure 5. Plasma frequency (MHz) at h=260 km
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Fitting the Leading Edge Data in the 8 Channels
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3-D Inversion of WSBI Leading Edge
Virginia, August 6, 1994, 02:21

Figure 7. Plasma frequency (MHz) at h=243 km
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3-D Inversion of WSBI Leading Edge
Virginia, December 7, 1994, 18:50

Figure 8. Plasma frequency (MHz) at h=226 km
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3-D Inversion of WSBI Leading Edge
Virginia, December 8, 1994, 09:05

Figure 9. Plasma frequency (MHz) at h=293 km
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Figure 10 shows ionosphere in local noon time. The ionosphere is weakly

inhomogeneous at that time.

4. Discussion and Conclusions

We have demonstrated here the capabilities of the WSBI inversion method as a
viable diagnostic tool for determining the spatial variation of medium and large-scale
structures in the ionosphere. It is particularly valuable that the method is able to produce
two-dimensional snapshots of horizontal structure of the lower F2 region (when the
parametrization (3) is used). For the Virginia OTHR these snapshots cover a 64° sector
of up to A2000 km radius. None of other extant experimental techniques (e.g. incoherent
scatter and ionospheric tomography) employed for ionospheric measurements are capable
of providing such a comprehensive picture of the horizontal structure of the ionosphere.

The accuracy of this method has been tested using both simulations and
experimental tests [Fridman and Fridman, 1994; Fridman et al., 1994], which show that
it provides accurate profiles of the F region below the F2 peak. For other ionospheric
layers the diagnostics may not be so effective and to further improve this method, it may
be necessary to distinguish between leading edges associated with the E- and F-layers.

Currently there are two OTHRSs operating in the US, one in Virginia and another
in Texas, making WSBI and QVI ionospheric soundings every 12 minutes. Using
available computational resources, the WSBI inversion technique described here is able
to perform inversions within the operational cycle of the sounders. Thus, implementation

of the WSBI inversion technique at the existing OTHR sites can provide real-time
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3-D Inversion of WSBI Leading Edge
Virginia, March 21, 1996, 17:45
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Figure 10. Plasma frequency (MHz) at h =227 km
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3-D Inversion of WSBI Leading Edge
Virginia, March 21, 1996, 23:09
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Plasma frequency (MHz) at h=244 km
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monitoring of ionospheric irregularity structures over a very large geographic area. In
addition to direct utilization in the OTHR coordinate registration process, this unique
information is of potential use to other users of ionospheric propagation information, as
well as providing a valuable input to the National Space Weather Program [Wright, 1995,
1997]. Furthermore, routine analysis of this information holds the promise of extending
our understanding of the structure and dynamics of medium and large-scale ionospheric
irregularities.

Unfortunately this project was terminated two months earlier than planned and we
were unable to finish the work on WSBI inversion from simultaneous data of both
backscatter sounders.  This development was stopped on the debugging stage. If
accomplished it could provide enhanced BI inversions for the overlapping coverage

region of the two sounders.

Acknowledgments: We are grateful to L. J. Nickisch and M. Hausman of
Mission Research Corporation for providing us the data and for productive discussions.
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